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ABSTRACT 

The work reported here uses error modeling, both deterministic and probabilistic, as a means of quantifying 
the inaccuracy in computational fluid dynamics (CFD) results.    The two fundamental elements of error 
modeling are the quantification of error sources and the propagation of error through a solution.  The present 
research focuses on the error sources and treats error propagation either in a deterministic manner or by 
using a Monte Carlo approach.  A nonintrusive form of error modeling based on the concept of “defect 
correction” is used.  The truncation errors, or other error sources, are computed and added to the residual.  
The equations modified by error sources are then solved, and the error in the solution is the difference 
between the truncation-error-forced solution and the normal one. The present methods have been applied to 
four CFD solvers that use structured and unstructured grids, and address examples of truncation error and 
turbulence modeling error.  Both deterministic error correction and probabilistic error modeling are 
discussed.   

1.0  LIST OF SYMBOLS AND ABBREVIATIONS 

fC  skin friction coefficient 

DC  drag coefficient 

pDC ,  pressure drag coefficient 

vDC ,  viscous drag coefficient 

LC  lift coefficient 

MC  pitching moment coefficient 

pC  pressure coefficient 
CFD computational fluid dynamics 
DPW drag prediction workshop 
M Mach number 
MC Monte Carlo 
N number of grid points 
nperts number of perturbations (realizations) 
p  probability 
PC polynomial chaos 
PDF probability density function 
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wP  wall pressure 
q  exact solution vector 
Re Reynolds number 
RMS root mean square 
RN random number 
RSS root sum of squares 
s  entropy 
SQA solution quality assessment 
stdev standard deviation 
SVD singular value decomposition 
TE truncation error 
u  CFD solution vector 
α  angle of attack 

oδ  boundary layer thickness 
σ  standard deviation 
ξ  computational streamwise coordinate  
η  computational normal coordinate 
<.> average 

2.0 INTRODUCTION 

The development of simulation-based methods in engineering and science has been relentless.  However, 
there are some problematic aspects of simulation that hinder this progress and must be addressed.  Two 
fundamental challenges in the ideal world are phenomena that have significant influence across very large 
ranges of scales and those that involve physics that must be modeled, often empirically.  A fundamental 
challenge of the real world is that almost no physical items are exactly as idealized; there are differences 
between the definition of a simulation and the physical world it nominally models. 

Probabilistic simulation methods may be useful in addressing these issues.  The challenges cited above are 
responsible for errors that, while not irreducible, have proven to be difficult and/or expensive to reduce, with 
no real hope of breakthroughs using existing technologies.  If those errors can somehow be bounded and their 
magnitude quantified, then it is possible to predict the possible range of solutions that may exist, despite the 
inability to predict the exact solution.  In effect, probabilistic error modeling hopes to exchange the impossible 
task (at least in general turbulent flows) of producing perfect simulation results for the mere Herculean task of 
producing results that are close enough to the true behavior with a high level of confidence.   

Deterministic and probabilistic error modeling represent two levels of estimating the inaccuracy in a 
simulation.  Deterministic error modeling gives the sign and magnitude of predicted error in a solution.   
Probabilistic error modeling makes some prediction of a confidence interval or perhaps a probability 
distribution for the error.  The error is a single number, and so an error prediction is in some sense as difficult 
as the original simulation.  A probabilistic calculation might substitute a probability distribution function 
(PDF) for a single variable in the original simulation, which adds a new dimension to the problem, and which 
potentially raises the difficulty by orders of magnitude.   The computational cost of doing probabilistic 
simulation depends on the technology used and the level of accuracy needed.  The Monte Carlo method has 
been used, despite its high cost, to explore the basic nature of probabilistic error modeling.  Despite the 
potentially greater computational difficulty (cost) of probabilistic methods, they are believed to be essential 
because they are more reliable than deterministic methods.   Deterministic methods have an Achilles heel: the 
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potential for cancellation between errors of opposite sign, leading to unrealistically low predictions of error.  
Probabilistic methods can be constructed to minimize the possibility of error cancellation, leading to robust 
predictions of probable errors in a simulation.  Because of these differences, it is important at this time to 
pursue deterministic and probabilistic methods, as both make important contributions toward improved 
simulation methods.  

The present effort addresses probabilistic methods in the context of error modeling.   The development of 
probabilistic simulation methods is in its infancy, and these methods will not be well validated for many years.  
Relying on such methods for core simulation capability in critical situations would be risky; the use of these 
methods in an auxiliary role of error prediction is more likely to be accepted by the engineering community.  
Furthermore, error modeling via defect correction is readily implemented in existing simulation methods, once 
the error sources are known.  Key processes in error modeling are the ability to compute the sources of error 
and the validation of this calculation.  Examples of these steps are given in the context of deterministic 
error modeling. 

3.0 ERROR EQUATION 

Inaccuracy modeling involves two fundamental processes: its generation by sources of inaccuracy, and the 
propagation of inaccuracy in the solution via convection and diffusion.  This can be illustrated in a derivation 
of the defect-correction form of the error equations.  The analytic Navier-Stokes equations in 1D can be 
written as 

0))(( =∂+∂ qFq xt         (1) 

in which q is the solution and F(q) includes both the inviscid and viscous fluxes.   The discrete form of the 
Navier-Stokes (CFD) equations are added to both sides of the equation, yielding  

))()(()()( )2()1()2()1( qFqFqqqFq xxttxt ∂−+∂−=+ δδδδ          (2) 

in which )1(
tδ  and )2(

xδ  are the discrete first-order temporal and second-order spatial derivatives, typical of 
CFD methods.  (CFD methods of different order can, of course, be used.)  The CFD equations are on the left 
and the truncation errors are on the right-hand side of Eq. (2).  The exact truncation errors are given by  

))()(()()( )2()1( qFqFqqqTE xxttexact ∂−+∂−= δδ          (3) 

An estimate of the truncation error can be obtained with 

))()(()()( )()2()()1( qFqFqqqTE N
xx

M
ttest δδδδ −+−=          (4) 

in which M and N are as high an order as possible, but usually just one order higher than the native CFD 
solver.  The use of higher order discretization terms in Eq. (4) highlights a dilemma, namely, why not just use 
the high-order method in the native CFD solver, rather than compute error estimates?  First, true higher order 
methods have proven difficult to develop and/or costly to use for structured and unstructured methods applied 
to complex configurations.  Second, error estimation is still needed, even for higher order methods. 

Let us split the exact solution q into the CFD solution u  and the error ε  therein,    

ε+= uq  .        (5) 

The defect correction form of the CFD equations has a truncation-error forcing term 
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)()()( )2()1( εεδεδ +=+++ uTEuFu estxt           (6) 

Finally, assume that the truncation error can be computed from the CFD solution, ignoring the contribution 
from the, presumably small, error in the solution 

)()()( )2()1( uTEuFu estxt =+++ εδεδ           (7) 

Equation (7) is the defect correction form of the CFD error equations used for error modeling.  During the 
normal CFD process, the standard CFD equations, here taken to be 

0)()( )2()1( =+ uFu xt δδ          (8) 

are solved for u , and the error ε  is obtained by difference.   

Similarities between the original governing equations and the defect correction form used for error modeling 
indicate that error will have some quasi-physical behavior.  Error modeling involves the solution of equations 
similar to the governing equations, but for a forcing term due to the error source.  Inaccuracies in a solution 
behave much like disturbances in physical flow; they convect and diffuse, and they may amplify or decay 
depending on flow conditions.  It may be helpful to think of error as pollution (e.g., in the accuracy of a 
solution) that originates from distributed sources and convects through the domain.  Error in the solution 
obeys conservation equations, and it is conserved with respect to transport.   

We state without demonstration that errors originating from other sources can be modeled in the context of 
Eqs. (7) and (8).  An obvious extension is the error generated by the use of lower order discretization in a 
boundary condition.  Errors in the modeling of chemical reactions or turbulence can, conceptually, be treated 
this way.  The key issue is that error sources exist where the governing equations are inaccurate, and the errors 
created in the solution then propagate, like pollution, according to the governing equations.   

4.0 ERROR MODELING STRATEGY 
The approach described here uses a CFD solver as a “black box,” meaning that it works with no knowledge of 
the solver's inner workings.  The basic strategy used for steady-state results presented here involves 5 steps: 
(1) iterate the normal CFD solution to convergence and save it; (2) compute and store the truncation error in 
the normal CFD solution; (3) add the truncation error from the normal solution (which is frozen) to the 
residual during time integration; (4) iterate the defect correction solution to convergence; (5) compute the 
error as the difference between normal and defect-corrected solutions.  All of these steps except the 
calculation of the truncation error can be implemented very easily. 

The only substantive modification to this process is the option to use a scaling factor to reduce the magnitude 
of the truncation error used for defect correction; this operation must then be followed by a reciprocal scaling 
to recover the full error.  In the limiting case of an infinitesimally small scaling factor, this has an effect 
similar to using a truly linearized error equation.   This approach could probably be used in all cases, but we 
have used it only when needed to remedy a divergent defect correction calculation (see Section 10).    

5.0 CALCULATION AND VALIDATION OF THE TRUNCATION ERROR 
The complement to the simplicity of the error modeling equations is the difficulty of computing the truncation 
error, and the error sources in general.  The truncation error can be computed with good accuracy only when 
good higher order discretization methods exist.  Except for some finite element methods, such as 
discontinuous Galerkin methods, few 'higher' order methods truly are, when applied on the curvilinear grids 
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applied to complex geometries.  The difficulty of computing the truncation errors accurately is exacerbated at 
shocks, grid metric discontinuities, and at boundaries; high-aspect ratio cells in unstructured grid methods can 
generate large truncation errors that are not well-quantified.  If truncation errors could be computed 
accurately, typical CFD methods would be of higher order. 

The methods used to construct a higher-order discrete approximation for computing the truncation error 
depend significantly on the native flow solver, so few general rules apply.  Three important issues should be 
noted: (1) For the higher-order discretization, it is acceptable and perhaps preferable to use a method that 
minimizes or omits the algorithmic dissipation, which can be the biggest source of truncation error; (2) Due to 
their errors in terms of wave number, the Euler terms are generally much more important than the viscous 
terms; (3) Boundaries are very important in general.   

We have implemented error modeling for four different CFD solvers, representing three different spatial 
discretization schemes.  The work on these codes is briefly summarized below.   

NASA’s Overflow and ARC2D both use finite difference methods on structured curvilinear grids.  Work with 
ARC2D was used as a proof-of-concept, and was superseded by work with Overflow.  The higher order 
discretization was implemented using 4-point central interpolation and gradients onto 'cell faces,' followed by 
differencing of the cell-face fluxes.  Algorithmic dissipation was not added to the higher order flux terms.  
Boundary terms were treated with second-order one-sided formulae.  Truncation errors in the Spalart-
Allmaras turbulence model were computed in a similar manner, and the gradient terms in the source terms 
(vorticity) can also be computed with fourth-order central methods.  The integrated forces and moments were 
also computed to higher order.  Second-order surface-normal gradients were used, although this is not 
necessarily a wise step.  Higher order grid metrics have been used, but they were not found to be beneficial for 
'typical' grids.  

FUN3D is a node-based unstructured grid finite-volume method developed by NASA.  Its default order of 
spatial accuracy is second order, obtained using a linear least-squares reconstruction and, commonly, the Roe 
inviscid flux algorithm.  Viscous fluxes are typically computed with a Gauss-Green method, but finite 
differencing is also available.  The 'higher order' discretization was developed using quadratic least-squares 
reconstruction.  Both linear and quadratic methods fit a surface to the cell-averaged solution values cast onto 
the grid nodes.  This approach is order consistent for the second-order linear reconstruction, but it is order 
deficient for quadratic reconstruction aimed at yielding a third-order method.  Thus, true third-order accuracy 
is precluded.  This approximate quadratic fit typically requires a reconstruction stencil that extends beyond 
nearest neighbor cells.  The quality of the reconstruction fit at each grid node was assessed indirectly: a 
singular-value decomposition (SVD) method was used to solve the least-squares problem, and it signaled rank 
deficiency.  Deficient stencils were not used.  They were either expanded until the stencil was sufficient, or 
the quadratic fit was degraded to linear.  The Roe algorithm of the native discretization scheme was not used.  
Instead simple averaging was applied to the solution or the fluxes, and both methods behaved similarly for the 
cases studied to date.  The same quadratic reconstruction was used for inviscid and viscous fluxes by 
estimating the value and gradient of the solution. 

AVUS (formerly known as Cobalt60) is a cell-based unstructured solver developed by the US Air Force at 
Wright-Patterson AFB.  The grid connectivity is different than in FUN3D which requires a different algorithm 
for constructing the extended stencil.  Other features, such as the use of the SVD algorithm and omission of 
the Roe fluxes are common with the FUN3D code.  No AVUS results are presented herein.   

Once the higher order discretization terms are developed, the spatial truncation error is trivial to compute: it is 
the difference between the normal-order and higher order residuals, as indicated in Eq. (4).  We have not yet 
examined the effects of temporal truncation errors in error modeling, in large part because time-step 
refinement is easy. 
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Two methods of validating the truncation error are mentioned here.  The defect correction form of the error 
equation is so simple it can be implemented in a CFD solver with a very low probability of programming 
errors.  A properly computed truncation error will cause defect correction solutions to converge with respect 
to grid refinement toward the same grid-asymptotic solution as the default CFD methods, and converge more 
rapidly than the default CFD method.  A related and useful test is to compare normal and defect-corrected 
solutions against solutions with exact properties, like inviscid flows with zero drag and entropy production.   

An example of validation of the truncation error by comparison to a flow with exact properties is given in 
Figure 1.  Inviscid subsonic flow generates no entropy, so entropy is a measure of error.  Calculations of flow 
past an airfoil were performed with FUN3D, with and without defect correction.  A small detail near the 
leading edge is shown with an overlay of entropy contours from the native solution (black contour lines, white 
labels) and the defect-corrected solution (white contours, colored labels), both computed on the same grid 
(purple).  The native FUN3D solution has entropy, to the levels plotted, in five layers of cells near the body.  
Defect correction eliminates the entropy in the outer 4 of these layers, leaving entropy in the body-adjacent 
cells only. The remaining entropy in the near-boundary cells is probably due to the boundary treatment, which 
was not at the same level of accuracy as the interior cells.  The drag coefficient should theoretically be zero in 
this flow.  The native FUN3D solution yields CD = 0.0011, which drops 62% to 0.00041 with defect 
correction.  

 

Figure 1: Entropy Contours With and Without Defect Correction.  
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When validating the truncation error, it is essential to look at many aspects of the solution, and especially not 
just the integrated forces and moments.  A fundamental problem in error modeling is cancellation between 
errors of opposite sign.  This affects validation of the truncation error and is a persistent problem in the use of 
error modeling.  It is appropriate, therefore, to discuss error cancellation as an integral part of truncation error 
validation.  

6.0 ERROR CANCELLATION 

The truncation error has sign and magnitude, for each equation, at each grid cell.  It is also made up of a sum 
of parts.  The example to be given below involves viscous and inviscid terms of the truncation errors, but 
individual components like the inviscid terms in, for example, the ξ  direction are distinct from those in the η  
direction of a structured-grid solution.  In a solution with many grid points and multiple truncation error terms, 
some cancellation between truncation error terms of opposite sign is inevitable.  Also, truncation errors from 
different grid cells may cancel as the error propagates through the solution.  This occurs at captured shocks, 
by design.  Where errors cancel, the solution is better than should have been expected.  Unfortunately, this 
'good luck' can disappear in a similar solution, leading to inexplicable error in the CFD results.  In error 
modeling, error cancellation can lead to results that are otherwise inexplicably good or bad.  Two examples of 
error modeling are given below in which error cancellation is significant.   

Figure 2 gives the integrated drag on a circular cylinder in low speed laminar flow computed using FUN3D 
both with and without defect correction.  The net drag versus 1/N 2/3 is given, where N is the number of grid 
points.  These are fully 3D grids on a short spanwise section of the cylinder, and grid refinement is 
approximately isotropic.  Grid convergence should be roughly linear in this coordinate system, for this 
second-order method.  The solid lines and solid symbols illustrate this convergence for the standard FUN3D 
solutions.  The convergence is observed to be nearly linear at the two Reynolds numbers Re = 10 and 1.  The 
dashed lines and open symbols are the result of defect correction and are labeled “SQA iv”; the “iv” denotes 
that inviscid and viscous truncation errors are included, and “SQA” is our name for the process.  At Re = 10, 
the total drag from the SQA iv results is astonishing good, even on the coarsest grid.  Conversely, the SQA iv 
results at Re = 1 are abysmal: they give essentially no improvement over the standard prediction (roughly zero 
predicted error), and the predicted error increases with grid refinement.  Further examination shows, however, 
that at Re = 10, the simple decomposition of the total drag into its viscous and pressure components reveals 
cancellation between nearly equal and opposite errors in those components.  Also, note the line labeled 
“SQA i” and “SQA v,” which denote defect correction with only the inviscid or viscous components of the 
truncation error.  At Re = 10, the viscous truncation errors are negligible relative to the inviscid ones.  (The 
error bars are discussed later.) 
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Figure 2: FUN3D Calculation of Flow Past Cylinder at Low Reynolds Number. 

In the Re = 1 results, the predicted error in the total drag is almost zero on the coarsest grid, and increases 
slightly with increasing number of grid points (1/N 2/3  → 0), giving the appearance that error modeling fails.  
However, defect correction predicts that the viscous and pressure components of the drag have nonzero errors 
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of opposite sign; as a consequence, the net drag is predicted to have essentially zero error on the coarsest grid.  
The predicted error in the pressure drag converges to zero with grid refinement.  On the coarsest grids, the 
results labeled “SQA i” and “SQA v” demonstrated that the viscous contribution to the drag is dominated by 
the viscous truncation errors, so for similar flows at Reynolds numbers below 10, the viscous truncation errors 
are likely to be significant.  On the coarsest grid, the inviscid truncation error's contribution to the pressure 
drag is about 20% of the contribution of the viscous truncation errors.  The pressure drag is corrected 
downward, while the viscous drag is corrected upward by an approximately equal amount.  The predicted 
error in the viscous drag decreases slowly enough that it does not extrapolate to zero at zero grid spacing.  We 
strongly suspect that this is due to the first-order methods used to evaluate the wall shear stress when the 
viscous drag was integrated, for which the quadratic reconstruction was not implemented.  (Although not 
displayed here, field quantities in these solutions have been examined, and they display convergence behavior 
consistent with the results for the pressure drag coefficient.) 

Another form of error cancellation occurs during spatial integration.  For example, similar positive errors in 
the pressure on the front and back of the cylinder may cancel, in terms of the net drag force they produce.  
Truncation errors of similar magnitude and opposite sign typically occur on opposite sides of a captured 
shock; this is how the solution downstream of the shock can be correct, even though the solution inside the 
shock is not accurate.  

Error cancellation is believed to be very common in typical CFD results and therefore in deterministic error 
modeling of these calculations.  The results shown here demonstrate two types of error cancellation: between 
components of the error sources (truncation error) and between aspects of the solution (e.g., components of 
the drag).  Of all CFD calculations explored by the authors in sufficient detail to assess individual 
contributions to the error in the solution, the majority have been found to display significant error 
cancellation.  If there is proven consistent error cancellation, as typically occurs at captured shocks, this error 
cancellation may be relied upon as part of normal CFD practice.  However, even at shocks, this cancellation 
may fail and produce, for example, the carbuncle phenomenon.    

7.0 PROBABILISTIC INTERPRETATION OF DETERMINISTIC ERRORS 

Options exist for estimating “error bars” from the results of deterministic error calculations.  Any method that 
eliminates some error cancellation can be used to some benefit.  The error bars in Figure 2 were produced by 
computing a “root sum square” (RSS) of the errors in the pressure and viscous components of drag.  The RSS 
concept is used because it is a valid means of computing the standard deviation of the sum of uncorrelated 
processes.  The use of RSS error bars is approximate in the present application.  For example, in a separating 
flow, there is some physical correlation between the surface velocity gradient and the surface pressure; for 
general flows, however, this correlation is expected to be weak.  The RSS concept is correct for independent 
Gaussian processes, and the rule applies, strictly speaking, to standard deviations, not the magnitude of the 
deterministic errors as was done.  The results at Re = 1 are especially improved by this approach.  However, 
any process that is based on a deterministic solution of an error modeling equation will have limited reliability 
due to the high probability of cancellation among error source terms, which this RSS postprocessing step can 
never address.  

8.0 PROBABILISTIC ERROR MODELING 

Probabilistic error modeling emerges naturally from the acknowledgment that error source terms are 
approximate and uncertain.  Mathematically, this is done by constructing a probabilistic description of the 
error source terms, for example, in terms of an uncertainty interval or as a probability distribution.  In 
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deterministic modeling, the source term has a specific value at each grid point, for each equation in the set of 
CFD equations.  In probabilistic modeling, every one of those specific values is replaced by a probability 
distribution.  The equation that is the basis for the error modeling, Eq. (6), then becomes probabilistic, and its 
solution is a probabilistic prediction of the error.   

Two important challenges in probabilistic error modeling are (1) the methods needed to estimate the 
probabilistic error source terms, and (2) an efficient means of solving the probabilistic equations.  In this 
work, we avoid the second issue and use Monte Carlo, which works well, but can be very expensive to use.  
The probabilistic work reported herein focuses on methods of modeling probabilistic error sources, and 
demonstrating probabilistic error predictions.  There is still much to be learned about the fundamental nature 
of probabilistic modeling, in addition to the very real need for efficient methods. 

Probabilistic error modeling suffers from a lack of useful analytical guidance for computing the uncertainty in 
the error source terms.   The truncation error formula, Eq. (3), provides explicit guidance that can be followed 
to approximate the deterministic truncation error.  One approach is to use the terms neglected in computing 
the deterministic truncation error to compute the uncertainty in the deterministic truncation error.  This 
analytical approach suggests that either an even-higher-order approximation or a means of estimating the 
truncation error from ε+u  are candidates for a probabilistic description of the truncation error.  Both 
methods have been explored briefly, with mixed results that exhibit advantages and disadvantages.   A 
different approach is empiricism: propose and test plausible concepts, and use ones that perform well.  This is 
the method with which we achieved the best results in early results, and which has been used exclusively since 
that time.  However, alternate methods deserve additional research. 

The general approach we have used is to approximate the probabilistic error source term as the deterministic 
truncation error plus a zero-mean Gaussian distribution whose standard deviation scales on the magnitude of 
the deterministic truncation error.  Thus, the assumed probability distribution of truncation error (TE) having a 
nominal value TE0 could be described as 

)))/()((exp(1)( 2
00

0

TETETE
TE

TEp β
πβ

−−=          (9) 

in which TE0 is the deterministic truncation error and β  is a parameter that regulates the uncertainty interval.  
For example, if β  = 1/3, the PDF of the TE is a Gaussian centered on TE0 with a standard deviation of  
TE0 /3, so the 99.7% cut-offs on the TE distribution are 0 and 2 TE0.  This is a reasonable first guess at a 
probability distribution for the truncation error.   

It is now important to consider how the uncertainty in truncation error is going to be used in a probabilistic 
calculation.  A Monte Carlo simulation consists of many realizations of a deterministic process, and the 
statistical properties of the aggregate of all of these simulations represent the probabilistic simulation.  First, 
we establish the notation used to define the probabilistic truncation error: 

),();,(),( 0 kiTEmkiRNkiTE m =         (10) 

Here, i denotes the i-th grid point (for structured or unstructured grids), k denotes the k-th equation (e.g., 
density conservation), and m is the m-th Monte Carlo realization.  Monte Carlo simulations are performed by 
creating a random number field RN, and solving Eq. (6) for some number of realizations, and then statistically 
processing all realizations.  Each realization involves a frozen RN field.   

All that remains to do is determine );,( mkiRN  and the number of realizations needed to achieve a converged 
simulation.  There are constraints on RN, some from mathematical considerations, and some from knowledge 
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of CFD.  The statistics of the error source over all realizations must reasonably approximate the intended 
probability, as in Eq. (9).   The random field must be smooth enough so that the spatial discretization of the 
flow solver can be applied to the random field with minimal truncation error.  Truly random fields are very 
jagged, and have significant energy in frequencies that cannot be resolved by the flow solver, which is also the 
error solver.  If such a random field were to be used (Eq. (10)) to scale an otherwise smooth truncation error 
field, the CFD solver's algorithmic dissipation would result in severe truncation error and loss of accuracy in 
the solution of the error equation.  Thus we apply iterative second- and fourth-order smoothing (see below) to 
a field that is initially generated by a classical random number generator.   Comments about the actual shape 
of the probability distribution and effects of that shape are given in the following section.   Unless otherwise 
noted, the random field applied to the density equation has been applied to all equations.    

9.0 PROBABILITY DISTRIBUTIONS 

A focus of the present work has been on understanding the details of the uncertainty modeling itself, i.e., the 
role played by the distribution of the random number fields used in the SQA method.  As mentioned earlier, 
errors in the modeling of chemical reactions or turbulence can conceptually be treated in the context of 
Eqs. (7) and (8).  In the case of turbulence modeling for example, in the hierarchy of decisions to be made in a 
RANS-based SQA simulation, the choice of turbulence model is, in a sense, the leading-order approximation.  
The next order lies in the identification of which specific terms in the model are contributing sources of 
uncertainty (for example, rotation-curvature and compressibility correction terms in the Spalart-Allmaras (SA) 
model).  The next level in the SQA modeling must consider the statistics of these terms, i.e., specify the 
probability distribution functions (PDF) for the random input field RN).   

To understand the role played by the input PDF, consider the following three probability distributions.  The 
first is a “flat” probability distribution, i.e., equally probable random numbers between specified minimum 
and maximum values.  The second PDF is the result of second- and fourth-order spatial smoothing of this flat 
distribution, rescaled on output to maintain specified bounds (i.e., the method mentioned above).  The 
rationale behind the smoothing is to produce random number fields which are consistent with the spectral 
bandwidth of the CFD spatial discretization scheme being used, so that there is no implicit or uncontrolled 
filtering by the algorithm itself.  Due to the wavy nature of the resulting fields, the PDFs associated with this 
scheme have been found to exhibit a somewhat bimodal character and will be referred to, therefore, as the 
“bimodal” distribution.  The third PDF is a Gaussian distribution, synthesized from a specific sequencing of 
the bimodal distributions at various amplitudes (the “widths” and amplitudes of the underlying bimodal 
distributions having been solved independently by an optimization procedure).  In this scheme, the random 
numbers are spatially smoothed in the exact same manner as with the bimodal distribution, except that the 
amplitudes are varied from realization to realization in such a way that their aggregate results in a near-
Gaussian probability distribution.  The three input PDFs are shown in the left-hand graph of Figure 3 in 
normal form (unit area curves).  These PDFs were obtained by collecting the input statistics of 1,700 
realizations (also referred to as SQA perturbations) at 146 spatial points, for a total of 248,200 random 
samples divided into 101 equal-sized RN bins between plus and minus four standard deviations. 
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Figure 3: Relationship Between Input (Random Number) PDF Model and Output ( fC ) PDF for Three Different 
Uncertainty Models. 

The effect of these PDFs on the output distributions can be seen in the right-hand graph of Figure 3.  The 
output statistics shown in this figure were collected in the corner region of a Mach 2.85 16° compression 
ramp, where 248,200 samples of skin friction are similarly binned, corresponding to 1,700 SQA perturbations 
in the spatial range corresponding to ±4 boundary layer thicknesses from the corner.   Note that, in order to 
emphasize the relative magnitude of the outputs, the independent variables in the output PDF plots are scaled 
by the standard deviation of the bimodal case, rather than the individual standard deviations.  Because their 
standard deviations are almost equal, the Gaussian and bimodal output PDFs are essentially shown in normal 
form.  It is interesting to note that the bimodal input distribution generates a Gaussian-like output distribution, 
while the Gaussian input distribution generates a more pointy and longer-tailed output distribution, quantified 
by an excess kurtosis of 1.42 (as opposed to -0.11 for the output of the bimodal case).  The PDF 
corresponding to the flat input distribution is also Gaussian-like, with an excess kurtosis of -0.06, but its 
standard deviation is more than 5 times smaller than either the Gaussian or bimodal input case, as shown by 
the narrow black curve in the figure.  This greater than 80% reduction in the RMS is a measure of the implicit 
filtering (wavenumber cutoff) caused as a result of the spatial discretization algorithm in the CFD code, and 
provides a vivid illustration of the need for random number smoothing.  Most importantly, the above results 
demonstrate that the tailoring of the input PDF in a manner consistent with the spectral characteristics of the 
CFD code can be achieved by means of amplitude sequencing between SQA iterations. 
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Figure 4: Streamwise Variation of SQA Probability Density Function for Wall Pressure (Top Inserts, Red) and 

Skin Friction (Bottom Inserts, Blue) in the Separation Bubble Region of a 24-Degree Compression 
Ramp at Mach 2.85. 

When the compression ramp angle increases to 24° and/or the amplitude of the forcing random field is 
increased, the output PDFs were typically found to exhibit greater asymmetry.  The asymmetry is particularly 
pronounced in the highly nonlinear region associated with the separation shock.  This can be seen in the 
composite picture of Figure 4 where local PDFs of pressure and skin friction are shown at various wall 
locations for the case of the 24° compression ramp, using a Gaussian input distribution.  The top PDFs (red 
inserts) correspond to wall pressure.  The bottom PDFs (blue inserts) correspond to skin friction.  Each PDF is 
plotted in normal form, and is based on 2,500 samples (2,500 SQA perturbations) collected into 51 bins 
between plus and minus six standard deviations. 

The background in the picture shows the ramp geometry, along with flooded contours for the uncertainty in 
pressure, defined as three times the pressure standard deviation.  The uncertainty in the pressure is helpful in 
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visualizing the location of the separation shock, as well as the average reattachment, both of which are seen to 
correlate well with the separation bubble indicated by the mean streamlines. 

 

Further evidence of the correlation between skin friction and wall pressure can be seen in the phase plots of 
Figure 5.  Much of this correlation is due to the variations in the lambda shock from perturbation to 
perturbation.  The strong correlation between Cf and Pw is virtually assured because each Monte Carlo 
realization is an attempt at obtaining the “correct” solution by means of a CFD calculation which implements 
the normal laws of physics.  It is easy to conjecture that this and other nonlinear flows will generate highly 
nonnormal probabilistic error distributions as a result.  This may have significant implications for methods 
that seek to achieve full probabilistic error calculations which are based on Gaussian expansions. 
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Figure 5: Phase Plots of Skin Friction vs. Wall Pressure at 16 Streamwise Locations in the Vicinity of the 
Separation Bubble, Shown for 1700 SQA Random Perturbations. 
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10.0 IMPORTANT DETAILS 

There are many details of the error modeling process that have proven to be important.   The most relevant 
ones are listed here.  

Truncation Error at Shocks:  At shocks, the notion of a convergent discrete approximation series loses 
validity, and a higher-order approximation may not be a better approximation of physics compared to the 
normal CFD methods.  The truncation error can be computed as described above, and it commonly causes the 
defect-corrected solution to suffer from Gibbs oscillations.  At strong shocks this may result in nonphysical 
behavior and divergence.  An option is to discard the truncation error at shocks.  In a very real sense, we 
concede insufficient knowledge of this topic, and take a path that avoids this issue for now.  A sensor flags 
grid points where the solution is decelerating through a sonic plane, and the truncation error at these and 
adjacent grid points is set to zero.  Results have also suggested that truncation errors are inaccurate at grid 
metric discontinuities.  We have not routinely set these truncation errors to zero in calculations, but this should 
be considered unless an alternate remedy can be found. 

Monte Carlo Convergence Acceleration:  Two strategies are used to accelerate the convergence of the Monte 
Carlo process.  The truncation error has a deterministic part (nonzero mean), and a probabilistic part that has a 
zero mean, using our assumption of a Gaussian distribution.  To avoid repeatedly solving the deterministic 
part of the Monte Carlo simulation, we first solve the deterministic defect-correction problem, and use its 
solution as the starting point for all of the Monte Carlo realizations.  The second step is to ensure that the 
mean of the random fields is close to zero over small numbers of realizations. 

Reduced Forcing:  The solution of the full CFD equations with stochastic forcing terms may lead to numerical 
difficulties.  One mechanism to alleviate these difficulties is to effectively linearize the error forcing by 
scaling down the magnitude of the random number field used, and subsequently inverse scaling the SQA 
output perturbations.  Note that deterministic results may diverge, too.  Thus, the concept of reduced error 
forcing also applies to the defect correction problem.  

11.0 DRAG PREDICTION WORKSHOP TEST CASE 

Probabilistic error predictions were performed with Overflow and the Monte Carlo (MC) method of the DLR 
F4 wing-body configuration used in the first AIAA Drag Prediction Workshop (DPW).  Calculations were run 
on a grid coarsened by a factor of two in each direction, and the computed error bars are compared to results 
on the reference grid.  Truncation errors are computed using fourth-order discretization for the high-order part 
of Eq. (4).  The uncertainty in the truncation error was assumed to be the magnitude of the truncation error.  
The truncation error field for each MC realization was computed as 

);(),(),();,( 00 miRNkiTEkiTEmkiTE +=           (11) 

in which RN(i;m) is a smoothed quasi-random field in the range [-1, 1].  The PDF of the random fields was 
not Gaussian, but it was center-weighted with reduced probability at the extremes (similar to the bimodal 
distribution shown above, Fig. 3).  This calculation involved nperts = 20 MC realizations, which is not 
converged.   Calculations of simpler flows were observed to be within ±32.5% (to within 95% confidence) to 
±48.7% (to within 99.7% confidence) of the asymptotic uncertainties with this many realizations.  Because the 
RMS of the standard deviation tends to converge at a rate proportional to nperts

-1/2, calculations that demand 
very high accuracy are expensive to do with Monte Carlo; however, quantitative estimates of uncertainty can 
be obtained more affordably.  In this case, the Monte Carlo convergence inaccuracies are believed to be small 
relative to the predicted uncertainties in the CFD results. 
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Figure 6: Monte Carlo and Overflow Prediction of (a) Surface Pressure (Top) and (b) Uncertainty in Pressure 

(Bottom), on the Surfaces and on the Wake Cut Grid, for DPW 1 at M = 0.8, CL = 0.5.  

Figure 6 gives the surface pressure and uncertainty at the σ3  level.  The highest uncertainties occur at the 
shock.  A Mach sweep was performed, using the angle of incidence that was found to give CL = 0.5 on the 
default (finer) grid as part of the DPW effort (Ref. [1]).  The σ3  error bars on the lift and pitching moment 
coefficients (Figure 7) are large enough to encompass the finer-grid solution.  The drag coefficient is too 
small by roughly a factor of five.  The majority of error in drag is in the viscous component, and there is very 
small predicted uncertainty in the viscous drag.  The very high stretching rate, near 1.3, in the wall-normal 
grid spacing is the suspected cause of this shortcoming, as good predictions of the uncertainties in skin friction 
have previously been obtained in simpler flows with better grid resolution.   
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Figure 7:  Monte Carlo and Overflow Prediction of Lift, Drag, and Pitching Moment for DPW 1.  Mach Sweep at 

Angles of Incidence Determined in Default-Grid Calculation.  

The application of the SQA methodology to the W2 wing-alone test case of the third Drag Prediction 
Workshop (DPW3, Ref. [2]) is shown next.  Figures 8-10 show the Monte Carlo and Overflow prediction for 
lift, drag, and pitching moment for three different computational grids as a function of the grid factor, 1/N 2/3.  
Two of the three grids are the medium and coarse grids of the DPW3 OVERFLOW runs; the third is an ‘extra-
coarse’ grid generated by decimation. 

Referring back to the notation of Eq. (11), we consider three analyses for the TE source term: (1) TE is the 
truncation error per se (“TE-based SQA”, Fig. 8), (2) TE represents turbulence modeling uncertainty source 
terms only (“TM-based SQA”, Fig. 9), and (3) TE contains both the truncation error and the turbulence 
modeling uncertainty source terms, added together in the RSS sense (“TETM-based SQA”, Fig. 10).  In each 
figure the zero-grid factor extrapolation of Sclafani et al.'s results (Ref. [3]) is indicated by a yellow symbol to 
represent the asymptotic fine-grid calculation most closely matching the present algorithm.  Note that perfect 
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agreement between the two is not necessarily to be expected because of a number of factors, including 
versions of OVERFLOW (the host CFD solver integrated with the present software is OVERFLOW 1.8r), 
possible differences in the Spalart-Allmaras model, and variations in the differencing schemes used.  

 
Figure 9 shows the Monte Carlo predictions when the SQA source term represents the turbulence modeling 
uncertainty only.  In this case, the deterministic correction is not a defect correction per se but, rather, a mean 
correction to the Spalart-Allmaras (SA) turbulence model, which attempts to take into account the effects of 
rotation-curvature [4] and compressibility [5] on turbulence.  For this analysis, the SQA perturbation 
parameters were determined from prior empirical calibrations obtained by applying the method to simpler 
canonical flows, such as the So-Mellor curved pipe flow [6], two-dimensional compressible mixing layers [7], 
and various supersonic compression ramps [8,9].  As previously mentioned the various uncertainty 
contributions were added in the RSS sense.  Additional testing using compressibility and rotation-curvature 
corrections separately revealed that the compressibility effects account for approximately 18% of the lift 
correction, 15% of the drag correction, and 21% of the pitching moment correction; the majority of the SA 
turbulence modeling correction effects are therefore attributable to the rotation-curvature effects.  

When plotted on the same scale as Fig. 8, it is evident that the uncertainty corresponding to the turbulence 
modeling terms is an order of magnitude smaller than the uncertainty associated with the truncation error.   

Figure 10 is an example of a more “comprehensive” uncertainty estimation result, obtained when the SQA 
source terms include both the truncation error and the turbulence modeling uncertainty.  Note that the 
deterministic (defect correction) error source terms are added algebraically, while the SQA perturbation source 
term magnitudes are added together in the RSS sense.  This has the predictable effect that, since the truncation 
error defect correction for the lift coefficient is a positive increment (Fig. 8) and the turbulence modeling 
mean correction is negative (Fig. 9), the net lift increment for the combined analysis is somewhat reduced 
(Fig. 10).  As more independent error components are taken into account, the error bars should increase.  In 
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Figure 8: Monte Carlo and OVERFLOW Prediction of Lift, Drag, and Pitching Moment Coefficients for 

DPW 3 Wing2 Configuration, M = 0.76, α = 0.5°, Re = 5 million,  TE-Based SQA (Defect Correction 
and Monte Carlo Perturbations Based on Truncation Error Only). 
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practice, this may not always be the case, however, due to Monte Carlo variations and small sample size 
considerations. 
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Figure 9: Monte Carlo and OVERFLOW Prediction of Lift, Drag, and Pitching Moment Coefficients for 

DPW 3 Wing2 Configuration, M = 0.76, α = 0.5°, Re = 5 million, TM-Based SQA (Mean Correction 
and Monte Carlo Perturbations Based on Turbulence Modeling Source Terms Only). 
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For the truncation error analysis (Fig. 8), the fact that the predicted error bars decrease with grid refinement is 
as expected.  However, the fact that the defect-corrected means diverge from the OVERFLOW results is and 
remains a source of concern.  The cause of this behavior is believed to be associated with the poor calculation 
of the truncation error near the trailing edge as a result of metric discontinuities at the square trailing edge.  
Specifically, the increase in the truncation error source term with grid refinement is reminiscent of the 
behavior at shocks, i.e., the truncation error is not obeying a "convergent-series" type behavior.  Under these 
circumstances, the defect correction is likely to produce erroneous results, possibly including local divergence. 
This is a reasonable criterion for discarding the truncation error at a discontinuity.  Recent implementation of 
this idea has had mixed success but suggests a large sensitivity to trailing edge treatment.  Thus, the truncation 
error calculation at metric discontinuities remains a key research challenge.   

12.0 FUTURE RESEARCH AREAS 

Probabilistic error modeling that uses the adjoint to project the sources of error onto the output functional 
should be developed.  Once the adjoint is computed, an inexpensive inner product between the truncation 
error and the adjoint gives an estimate of the deterministic error in the output.  This deterministic error 
modeling has been demonstrated by Park [10].  However, deterministic error modeling is observed to be 
unreliable.  Monte Carlo can be used to do economical probabilistic error modeling with the adjoint approach.  
Because of its anticipated economy, this approach will provide a useful tool for research in how to construct 
good probabilistic models of the error sources.  It also has the potential to be useful in production CFD as the 
adjoint method for other activities like adaptive mesh refinement and calculation of gradients for design 
optimization.   
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Figure 10: Monte Carlo and OVERFLOW Prediction of Lift, Drag, and Pitching Moment Coefficients for 

DPW 3 Wing2 Configuration, M = 0.76, α = 0.5°, Re = 5 million, TETM-Based SQA (Defect/Mean 
Correction and Monte Carlo Perturbations Combine Truncation Error and Turbulence Modeling 
Source Terms). 
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The polynomial chaos (PC) method is currently viewed as the best approach to achieve full probabilistic error 
calculations.  Prior PC work has focused on probabilistic boundary conditions, but not 3D field quantities like 
error sources, to our knowledge.  Research on PC error modeling will cover much new ground.  One concern 
is the modeling of probabilistic error sources.  Another is the convergence of PC expansions in nonlinear 
flows that generate highly nonnormal probabilistic errors; many expansion terms may be required, at high 
computational cost, to accurately portray key features like the tails of PDFs. 

Probabilistic modeling of errors caused by physical modeling (transition, turbulence, etc.) is an essential step 
toward comprehensive quantification of errors in CFD results.  Work in this area must focus on the 
development and validation of models for the probabilistic sources of error in physical models.  Error 
propagation can be treated with probabilistic methods, either defect correction or the adjoint method.  Success 
in this area will spawn an entirely new approach to improving physical modeling.  An important benefit will 
be the ability to optimize designs for a combination of high performance and low sensitivity of that 
performance to flaws in physical modeling.   
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Paper No. 1 
 
Discusser’s Name: R. Dwight 
 
Question: What were the uncertainty sources in the wing-body case? 
 
Author’s Reply: The source term in that case was the randomized truncation error, which is a three-
dimensional field which changes at each Monte Carlo realization and with each equation being solved. 
 
Discusser’s Name: B. Kleb 
 
Question: Why are only 10-20 Monte Carlo samples sufficient? 
 
Author’s Reply: While high numbers of Monte Carlo realizations were used for the PDF results shown here, 
I acknowledge this is rarely affordable. For the DPW results, the average number of Monte Carlo realizations 
was about 40. The reason a small number of realizations may be acceptable is that the uncertainty in the RMS 
due to sampling decays roughly like the square root of the number of samples. Therefore, most of the benefit 
of reducing sampling uncertainty is realized early on with, say, 10-20 realizations. I should point out that the 
CL, CM, and CD uncertainties shown for the DPW3 test case are equal to three times the standard deviation, 
multiplied by an empirical factor to correctly account for this additional sampling uncertainty. If higher-order 
statistics were required, then a larger number of Monte Carlo realizations would be needed. 
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